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The learning of signal directions in high-dimensional data through orthogonal decomposition or principal
component analysis �PCA� has many important applications in physics and engineering disciplines, e.g.,
wireless communication, information theory, and econophysics. The accuracy of the orthogonal decomposition
can be studied using mean-field theory. Previous analysis of data produced from a model with a single signal
direction has predicted a retarded learning phase transition below which learning is not possible, i.e., if the
signal is too weak or the data set is too small then it is impossible to learn anything about the signal direction
or magnitude. In this contribution we show that the result can be generalized to the case where there are
multiple signal directions. Each nondegenerate signal is associated with a retarded learning transition. How-
ever, fluctuations around the mean-field solution lead to large finite size effects unless the signal strengths are
very well separated. We evaluate the one-loop contribution to the mean-field theory, which shows that signal
directions are indistinguishable from one another if their corresponding population eigenvalues are separated
by O�N−�� with exponent ��

1
3 , where N is the data dimension. Numerical simulations are consistent with the

analysis and show that finite size effects can persist even for very large data sets.
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I. INTRODUCTION

The techniques of statistical physics have been applied to
the study of many different statistical learning methods �1�.
One of the most popular of these methods is principal com-
ponent analysis �PCA�, where one projects high-dimensional
data onto a subspace of lower dimension chosen to maximize
the variance of the projected data. If the data contains some
intrinsically low-dimensional structure, then PCA is a useful
way to uncover that structure. The principal components are
a set of orthogonal vectors defining the axes of the subspace.
Given a data set consisting of p, N-dimensional mean-
centered vectors ��, �=1, . . . , p, the principal components
are the eigenvectors of the sample covariance matrix

Ĉ= p−1������
T , that have the largest eigenvalues, i.e., those

directions in the data space along which there is the greatest
variation. Orthogonal decompositions of this type play a fun-
damental role in many areas of physics, engineering, and
statistics, e.g., recent applications include wireless commu-
nication, information theory, and econophysics �2–5�.

Methods from statistical physics have previously been ap-
plied to the problem of determining how much data is re-
quired to uncover genuine structure in the data. For data
produced from a model including a single signal direction, it
has been observed that there is a retarded learning phase
transition below which learning is impossible �6–9�. If there

is insufficient data, or if the signal strength is too weak, then
nothing can be learned about the signal direction. For data
produced by a model with multiple signal directions, we
have observed similar transition behavior in the eigenvalue
spectrum of the sample covariance matrix �10�. This suggests
that multiple nondegenerate signals each obey a retarded
learning transition behavior similar to that observed in the
one signal case. However, this is only a conjecture since the
behavior of the eigenvectors cannot be determined from the
spectrum.

In this contribution we extend the analysis of PCA learn-
ing to the case where the data is generated by a model with
multiple orthogonal signal directions. We confirm that the
signal directions do follow a similar behavior to the case of a
single signal direction, but we also observe larger finite size
effects than those seen in the analysis of the eigenvalue spec-
trum. We therefore investigate fluctuations around the mean-
field theory. In particular, we determine how close the signal
magnitudes have to be in order for the signals to be effec-
tively degenerate. These effectively degenerate signals turn
out to be the source of the observed large finite size effects.

The paper is structured as follows. In the next section we
describe the data model and review the relevant background
literature. In Sec. III we present the leading order asymptotic
theory, which confirms that the multiple signal case is a
straightforward generalization of the single signal case. In
Sec. IV we present numerical simulations that are consistent
with the theory but show that finite size effects can be sig-
nificant even for very large systems. In Sec. V we study
fluctuations around the leading order asymptotics. We con-
clude with a discussion in Sec. VI.
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II. MODEL AND BACKGROUND

The sample data vectors �����=1
p are considered to be

drawn from the zero mean Gaussian distribution

P��� = �2��−N/2�det C�−1/2 exp�−
1

2
�TC−1�	 , �1�

where the population covariance matrix C is isotropic with
variance �2 except for a small number of orthogonal sym-
metry breaking directions, i.e.,

C = �2I + �2�
m=1

S

AmBmBm
T , Bm · Bm� = �mm�, �2�

where Am	0∀m, and we assume an ordering A1�A2
� ¯ �AS, so that A1 represents the strongest signal strength.
The isotropic case corresponds to Am
0∀m. The sample

covariance matrix Ĉ= p−1������
T . It is common to form the

sample covariance from the centred data matrix, i.e., cen-
tered to mean zero. Since our population has zero mean we
choose to study, for simplicity, the behavior of the sample

covariance defined as Ĉ= p−1������
T . Simulations that we

perform will also adopt this definition and we expect that any
conclusions we drawn will be equally valid for a sample
covariance defined from the centred data. We are interested

in the observed distribution of eigenvectors of Ĉ when N is
large but finite, which can often be usefully approximated by
that found in the limit N→
 with p=�N, for some fixed �.

The behavior of PCA when one symmetry breaking direc-
tion B is present, with signal strength A, has been widely
studied using replicas in the context of unsupervised learning
�8,9�, where one considers the overlap J ·B between B and
the leading principal component J determined from the

sample covariance matrix Ĉ. The order parameter R2 is the
expectation value of �J ·B�2, over the ensemble of different
data sets, and provides a suitable means of characterizing the
expected accuracy of the first principal component J in rep-
resenting the true signal direction B. One observes the phe-
nomenon of retarded learning, whereby R2 goes through a
critical phase transition from R2=0 for ��A−2, to R2�0 for
��A−2 �6–9�. The problem of PCA batch learning when
more than one symmetry breaking �signal� direction is
present has not been extensively studied. Indeed it has been
speculated by Watkin and Nadal �6� that, for a similar �but
not identical� distribution to that in Eq. �1�, replica analysis
of maximal-variance learning with multiple signal directions
present is problematic and requires replica symmetry break-
ing. PCA learing with multiple symmetry breaking signal
directions has been studied in the context of on-line learning
by Biehl and Schlösser �11� and Schlösser et al. �12�. Within
the on-line learning scenario one often focuses on the ap-
proach to accurate learning of the true signal directions from
an increasing number of training examples, and so typically
one has �	1. This should be contrasted to the small sample
size ���1� batch learning scenario considered in this paper.
More recently this work has been extended by Bunzmann
et al. to include PCA as a prior stage for improving the
performance of artificial neural network training �13�.

Associated with the eigenvectors of the sample covari-
ance Ĉ are the corresponding eigenvalues , which indicate
the importance of the various principal components in repre-
senting the data set �10�. For the case where C contains one
symmetry breaking direction one observes a phase transition
in the eigenvalue spectrum of Ĉ at �c=A−2, thus coinciding
not unsurprisingly with the retarded learning transition ob-
served in the order parameter R2. Below �c the spectrum is
identical to that obtained from the isotropic case C=�2I.
Above �c the bulk of the sample covariance spectrum is still
identical to that for the isotropic case, but with a single
eigenvalue �the largest� clearly separated from the bulk.
When C contains S�1 �orthogonal� symmetry breaking
directions we observe a series of phase transitions at
�=Am

−2 ,m=1,2 , . . . ,S, with each time a single eigenvalue
separating from the upper edge of the bulk of the sample
covariance eigenvalue spectrum. Given this correspondence
in transition point location for the one symmetry breaking
direction scenario, the eigenvalue spectrum analysis
would suggest a series of retarded learning transitions at
�=Am

−2 ,m=1,2 , . . . ,S, when using multiple principal com-
ponents to learn multiple symmetry breaking directions of
the population covariance C. It is this aspect of PCA learning
that we investigate in this paper.

The results summarized above represent the leading order
asymptotic analysis, i.e., as N→
, with �= p /N fixed. At
finite N, sampling variation could lead to the largest eigen-

values of Ĉ not being as well separated as suggested by the
asymptotic analysis. At small finite values of N, learning of
signal directions would similarly require greater separation
of population eigenvalues than for larger values of N.
Johnstone �14� has extended the seminal work of Tracy and
Widom �15� to show that the standard deviation of the largest

eigenvalue 1 of Ĉ scales as N−2/3 when C is isotropic, in-
stead of N−1/2 that one might expect from a standard central
limit argument. The distribution of 1 when C contains sym-
metry breaking directions has been shown by Hoyle and
Rattray �10�, numerically, to be similar in shape �up to loca-
tion and scale transformations� to that for an isotropic C.
Recent work by Baik et al. �16� has revealed that above the
retarded learning transition the standard deviation of 1
scales as N−1/2, even when the largest population eigenvalue
is degenerate. This suggests that, irrespective of the issue of
retarded learning, population eigenvalues must be separated
by at least cN−2/3 for some constant c�0, otherwise they will
be effectively degenerate from the viewpoint of the sample

covariance Ĉ. Population covariance eigenvalues separated
by less than this are associated with signal directions that
cannot be distinguished as principal components. However,
although learning of the actual signal directions is intimately
linked to the sample covariance eigenvalues, this does not
guarantee that separation of population eigenvalues by cN−2/3

is a sufficient condition for learning the signal directions.
Indeed, we will show that greater separation between the
population eigenvalues is necessary in order for PCA to cor-
rectly distinguish signal directions.

In this paper we extend the leading order asymptotic
analysis of PCA learning performed by Reimann et al. �8� to
the scenario where C contains multiple symmetry breaking
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directions. For illustrative purposes we analyse the one prin-
cipal component case and multiple principal components
case separately, in Sec. III A and III B, respectively. In Sec.
V we analyze fluctuation effects to determine the effects of
finite N on learning the signal directions.

III. LEADING ORDER THEORY

Given p, N-dimensional pattern vectors ��, �=1, . . . , p,
PCA aims to find an orthonormal set of vectors J1 ,J2 , . . . ,JT
that represent the data set �����=1

p as accurately as possible.
Typically we require a set �Ji�i=1

T that is of lower complexity
than the original data, i.e., T� p. In this paper we do not
address the question of model selection and so take T�S,
i.e., the true signal dimensionality S is assumed to be known
for the purposes of analysis. We choose the principal com-
ponents �Ji�i=1

T so that the loss in using these to represent the
original data is minimized. Thus the set �Ji�i=1

T is determined
by maximizing the projection of the data �����=1

p onto the
principal components. We therefore seek to maximize

�
i=1

T

�
�=1

p

��� · Ji�2, Ji · Ji� = �ii�, �3�

with respect to the set �Ji�i=1
T . This is done by considering the

low-temperature limit, �→
 of an ensemble of principal
components which has the partition function

Z =� �
i=1

T

dJi��IT − K�exp���
i=1

T

�
�=1

p

��� · Ji�2	 , �4�

where the matrix K has elements Kii�=Ji ·Ji�. As commented
by Urbanczik, our analysis of the behavior of Z in the low-
temperature limit actually involves performing an analytic
continuation from small � to large � �17�. The overlap Ji ·Bm
provides a measure of the accuracy of the principal compo-
nent Ji in representing the signal Bm. Since the exponent in
Eq. �4� is invariant under the symmetry transformation
Ji→−Ji, then in the absence of any terms that break this
reflection symmetry the expectation of Ji ·Bm will be zero.
However, we can consider the quantity �Ji ·Bm�2 to study the
accuracy of PCA. This quantity is considered to be self-
averaging, so that as N→
 its value for a single instance of
a data set will be close to its ensemble average over �����=1

p .
The expectation value �Ji ·Bm�2�� can be evaluated by intro-
ducing source terms in the partition function, which also
serve to formally break the reflection symmetry, i.e.,

Z��hmi�� =� �
i=1

T

dJi��IT − K�

�exp���
i=1

T

�
�=1

p

��� · Ji�2 + ��
m,i

hmiJi · Bm	 ,

�5�

�Ji · Bm�2�� = lim
hmi→0+

lim
�→


���−2�2 ln Z��hmi��
�hmi

2 �
�

+ ���−1� ln Z��hmi��
�hmi

	2�
�
� . �6�

The term �2 ln Z��hmi�� /�hmi
2 represents the variance of Ji ·Bm

for a given data set �����=1
p , and so will vanish in the limit

�→
. Therefore we concentrate on evaluating

lim
hmi→0+

lim
�→


���−1� ln Z��hmi��
�hmi

	2�
�

. �7�

In the presence of the source term we expect Ji ·Bm to be
self-averaging, and so in the limit N→
 the expectation
value above has the same value as

� lim
hmi→0+

lim
�→


��−1� ln Z��hmi��
�hmi

�
�
	2

. �8�

The expectation value in Eq. �8� is nonzero in the limit
�→
 even at finite values of N, due to the presence of the
reflection symmetry breaking source terms, and can be easily
studied through analysis of the partition function Z, thereby
giving the behavior of limN→
�Ji ·Bm�2��. The average of
ln Z over data sets �����=1

p is performed through the replica
trick of using the representation

ln x = lim
n→0

�xn − 1�
n

. �9�

Consequently we determine the typical behaviour of the
orthonormal set J1 ,J2 , . . . ,JT, by evaluating the replica par-
tition function

Z = Zn��hmi����

=��� �
i,�

dJi
��

�=1

n

��IT − K��exp���
i=1

T

�
�=1

n

�
�=1

p

��� · Ji
��2

+ � �
m,i,�

hmiJi
� · Bm	��

�

, �10�

where the matrix elements Kii�
� =Ji

� ·Ji�
� . From the replica par-

tition function Z an effective potential � can be calculated in
standard fashion through the appropriate Legendre transform
�18�. The behavior of  � ln Z

�hmi
�

�
can be determined from the

location of the minimum of this effective potential. For
nearly degenerate signals we find, at finite N, fluctuations
strongly affect the asymptotic value of limhmi→0+Ji ·Bm��,
and so we calculate next to leading order corrections to the
effective potential for Ji ·Bm�� in order to determine the
asymptotic behavior of �Ji ·Bm�2��. In Secs. III A and III B
we consider the evaluation of � to leading order in N �tree
level� for the case of one principal component and multiple
principal components respectively. In Sec. V we consider the
next to leading order �one-loop correction� to the effective
potential for the one principal component case. From the
replica representation of ln x in Eq. �9� it is clear we need to
evaluate ln Z, and hence �, only up to O�n� contributions
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since only these are required to determine �Ji ·Bm�2��. In fact
the leading contribution is O�n��, and so in all cases the
effective potential � is only evaluated up to O�n�� contribu-
tions.

A. One principal component

Initially we restrict ourselves to considering just one prin-
cipal component, i.e., T=1, which we denote simply by J.
Overlap of J with the various signal directions defines order
parameters Rm

2 = �J ·Bm�2��. In the limit N→
 estimation of
Z proceeds along standard lines using replicas �1,8�, details
of which are given in Appendix A. The values of Rm

2 are
determined by locating extrema of the replica-symmetric ef-
fective potential for the order parameters �Rm

2 � �see Appendix
A�. To leading order in N �tree level� and leading order in n�
this is

�tree,1PC�x,�Rm�m=1
S � = −

1

2
Nn��2� 1

x�1 − �
m=1

S

Rm
2�

+
2�

1 − 2x�1 + �
m=1

S

AmRm
2�� . �11�

Here x=��2�1−q� with q being the order parameter repre-
senting the replica symmetric expectation value of the over-
lap between the different replica fields, i.e., q= J� ·J����,
∀����. The subscript 1 PC denotes the one principal com-
ponent case. Extrema, with respect to x, of Eq. �11� are lo-
cated at x=x0��Rm�m=1

S � and satisfy

x0 =
1

2
�1 − �

m=1

S

Rm
2	1/2��1 − �

m=1

S

Rm
2	1/2

± �1/2�1 + �
m=1

S

AmRm
2	1/2�−1

. �12�

For the one symmetry breaking direction case the results of
Reimann et al. �8� are obtained on taking the positive root in
Eq. �12�. Thus in general we shall take the positive root.
Substituting Eq. �12� into Eq. �11� yields

�tree,1PC�x0��Rm�m=1
S �,�Rm�m=1

S � = − Nn��2t2��Rm�m=1
S � ,

�13�

where

t = �1 − �
m=1

S

Rm
2	1/2

+ ���1 + �
m=1

S

AmRm
2�	1/2

. �14�

With t�0, stationary points of Eq. �13� satisfy �t /�Rm=0.
It is straight forward to verify that one has a stationary
point at Rm=0, ∀m, and a set of stationary points
Rm

2 = ��Am
2 −1��Am�1+�Am��−1, Rm�=0, ∀m��m, iff ��Am

−2.
Evaluating t2��Rm�m=1

S � at this series of stationary points,
one finds that for ��A1

−2 the stationary point at R1
2

= ��A1
2−1��A1�1+�A1��−1, Rm�=0, ∀m��1 is always domi-

nant. For ��A1
−2 the stationary point at Rm=0, ∀m has the

largest value of t2. Thus the asymptotic theory predicts a

behavior for the first principal component that is identical to
that for the one symmetry breaking direction case �8,19�,
namely,

R1
2 = �0, � � A1

−2

��A1
2 − 1�/�A1�1 + �A1�� , � � A1

−2,
�

Rm
2 = 0, m = 2, . . . ,S . �15�

As one would intuitively expect, at least in the asymptotic
limit N→
, the presence of additional signal directions does
not affect the accuracy of the determination of the first prin-
cipal component.

B. Multiple principal components

We now consider the case where we seek T principal
components J1 ,J2 , . . . ,JT. These are obtained as an ortho-
normal set of vectors that span as much of the variance
within the sample data set as possible. Thus we seek to maxi-
mize

�
i=1

T

�
�=1

p

��� · Ji�2, Ji · Ji� = �ii�. �16�

There is a T!-fold degeneracy due to all possible labelings of
the principal directions, but we choose i=1, . . . ,T to be or-
dered by decreasing variance so that they correspond to the
usual meanings of principal components. We determine the
behaviour of the orthonormal set J1 ,J2 , . . . ,JT, by evaluating
the ensemble average

�ln�� �
i=1

T

dJi��I − K�exp���
i=1

T

�
�=1

p

��� · Ji�2	��
�

.

�17�

The expectation value is evaluated using the replica method
and after some algebra we find the appropriate tree level
effective potential �to leading order in n�� is

�tree = −
1

2
Nn��2�tr�X−1�I − �

m=1

S

RmRm
T	�

+ 2�tr��I − 2X�−1�I + �
m=1

S

AmRmRm
T	�� , �18�

where Rm and X are defined by

X = ��2�I − q� , �19�

�Rm�i = Rmi, �20�

�q�ii� = qii�, �21�

with qii� the order parameter for the replica symmetric over-
lap between replicas for the i and i� principal components,

i.e., qii�= Ji
� ·Ji�

���� , ∀� ,����. Similarly Rmi is the order pa-
rameter for the replica symmetric overlap between the mth
symmetry breaking direction Bm and the ith principal com-
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ponent, i.e., Rmi= Ji
� ·Bm�� , ∀�. We assume that replicas for

different principal components are orthogonal, so that q and
thus X are diagonal. The effective potential in Eq. �18� then
decomposes as

�tree = �
i=1

T

�tree,1PC�xi,�Rmi�m=1
S � , �22�

where xi= �X�ii=��2�1−qii� and �tree,1PC�x , �Rmi�m=1
S � is the

effective potential function given by Eq. �11� for the one
principal component problem. Since for multiple principal
components the effective potential decomposes to a sum of
noninteracting terms, we can immediately express the learn-
ing curve behavior in terms of the learning curve behavior
obtained from the analysis of the first principal component.
Thus the asymptotic theory predicts that for i=1,2 , . . . ,T
�S,

Rii
2 = �0, � � Ai

−2,

��Ai
2 − 1�/�Ai�1 + �Ai�� , � � Ai

−2,
� �23�

Rmi
2 = 0, ∀ m � i, m = 1,2, . . . ,S .

As � increases a series of second order retarded learning
phase transitions occurs at �=Ai

−2, i=1,2 , . . . ,T, thus coin-
ciding precisely with the series of phase transitions observed
in the asymptotic eigenvalue spectrum of the sample covari-

ance matrix Ĉ �10�. On passing through the transition point
�=Ai

−2 the order parameter Rii
2 increases from zero.

IV. SIMULATION

Since the asymptotic theory for multiple principal compo-
nents indicates that the learning curve for the Tth principal
component is determined in isolation from the other princi-
pal components, we have performed simulations of only the
multiple principal component case. Figure 1�a� shows learn-
ing curves when C contains two symmetry breaking direc-
tions, with signal strengths A1

2=20 and A2
2=10. This leads to

transitions points at �=0.05 and �=0.1 for the first and sec-
ond principal components, respectively. For these simula-
tions we have set N=3200 and �2=1. The overlap values R11

2

and R22
2 shown are averages estimated from 1000 sample

covariance matrices Ĉ formed from data drawn from the dis-
tribution given in Eq. �1�. The presence of retarded learning
transitions for each of the principal components is clearly
present.

Figure 1�b� shows learning curves for a smaller system
size N=200 with all other parameters as in Fig. 1�a�. For the
smaller system finite size effects are clearly evident, particu-
larly near the transition points predicted by the asymptotic
theory in Eq. �23�. However, Fig. 1�c� demonstrates that the
expectation value for R11

2 does converge towards the theoret-
ical asymptotic value as N is increased. At smaller values of
N the discrepancy, due to finite size corrections, between the
asymptotic theory and simulation is more marked. For small
finite systems learning the underlying signal directions is ob-
viously a harder task and we would expect that this is exac-
erbated for signals with similar strengths, i.e., similar values

of A. Thus how well two orthogonal signal can be resolved
may be dependent on the system size N as well as the sepa-
ration between signal strengths. Figure 1�d� shows theoreti-
cal and simulation learning curves for a population covari-
ance that contains three signal directions. Although the first
two signal strengths are identical to those in Fig. 1�a� and the
retarded learning transition points are equally spaced, the
effect of the third signal direction on the learning curve for
the second principal component is very apparent when com-
paring Figs. 1�a� and 1�d�. This is an issue we address in the
next section.

V. FLUCTUATION EFFECTS

For the theoretical analysis given in Sec. III A and III B
we have taken the eigenvalues of C to be nondegenerate, so
that above the retarded learning transition at �=Am

−2 the sig-
nal direction Bm is learnt to some degree by the mth principal
component Jm. We can consider for illustrative purposes the
leading eigenvalue of C being g-fold degenerate, i.e., A1

=A2= ¯ =Ag
 Ā. In the asymptotic limit N→
 we would
expect that the first principal component is invariant to rota-
tions within the subspace spanned by the degenerate popula-
tion eigenvectors. The effective potential in Eq. �11� is a
function of �m=1

g Rm
2 , and so one has a subspace of stationary

points of Eq. �11� given by

�
m=1

g

Rm
2 =

�Ā2 − 1

Ā�1 + �Ā�

 �1

�0�. �24�

Taking an average of Rm
2 over the surface of a

g-dimensional sphere of radius ��1
�0� gives g−1�1

�0�. From
this one would expect the expectation value �J ·Bm�2�� to
be g−1�1

�0�.
One may question the likelihood of encountering a situa-

tion where the population covariance eigenvalues are pre-
cisely degenerate. Of more realistic interest is the case where
two �or more� eigenvalues of C are similar in value. For
illustration purposes we can consider the two symmetry
breaking direction case, i.e., S=2. Above the appropriate re-
tarded learning transitions, for sufficiently large N any dif-
ference A1−A2�0 will result in the first principal component
J1 learning the signal direction B1. This leads us naturally to
consider the behavior of R1 ,R2 when �A
A1−A2�N−� ,�
�0 as N→
. For large values of � we would expect to
approach the degenerate scenario with Rm

2 → 1
2�1

�0�, while for
smaller values of � we would expect the decrease in �A to be
sufficiently slow enough that the increase in N allows for B1

to be learned without confusion by B2, i.e., R1
2→�1

�0� and
R2

2→0 as N→
.
When the population covariance C has a rotational invari-

ance we expect this to be reflected in the saddle point struc-
ture of the partition function given in Eq. �10�. Consequently
the Hessian will be nearly singular for the near-degenerate
scenario. Under these circumstances critical- like fluctuations
will mean that the Hessian provides a contribution to the
effective potential similar in magnitude to that given by the
leading order �tree level�. The effect of a nearly degenerate
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population covariance can be determined by considering the
fluctuation contribution to the effective potential. The rel-
evant expression for the replica symmetric effective
potential, to leading order in n� �see Appendix B�, is
�=�tree+�fluc with

�tree = − Nn��2t2, �25�

�fluc =
n

2
��2��m C�Am�dm

−1 − �
m

C�Am�Rm
2 f2�Am�dm

−2

1 + �
m�

Rm�
2 f2�Am��dm�

−1 � ,

�26�

where

t = �1 − �
m=1

S

Rm
2	1/2

+ ���1 + �
m=1

S

AmRm
2�	1/2

�27�

and

dm = t��1 − �
m

Rm
2 	−1/2

− �1/2Am�1 + �
m

AmRm
2 	−1/2� .

�28�

The functions f�Am� and C�Am� are defined by Eqs. �B9� and
�B11� in Appendix B. Note that these expressions are valid
for all S	2. The behavior of the order parameters �Rm�m=1

S is

determined by minima of �. Setting Am= Ā+�Am we con-
sider the limit �Am→0. Small values of �Am will lead to the
fluctuation contribution in Eq. �26� being significant at finite
values of N. The relative sizes of �Am and N then become
important in determining the behavior of Rm

2 . To consider the

FIG. 1. �a� Learning curves, at fixed N=3200, for the first two principal components. The population covariance contains two symmetry
breaking directions, with A1

2=20,A2
2=10, and we have set �2=1. Simulation values �solid symbols� are averages over 1000 data sets. The

solid and dashed lines represent the theoretical results given by Eq. �23�. Standard errors of the simulation averages are less than the size of
the plotted symbols. �b� Learning curves, at fixed N=200, for the first two principal components. All other parameters as the same as for
Fig. 1�a�. �c� Convergence to the asymptotic value of R11

2 , at fixed �=0.2. The asymptotic value predicted by Eq. �23� is denoted by the
horizontal dashed line, while the solid symbols represent simulation averages over 1000 data sets. Standard errors of the simulation averages
are less than the size of the plotted symbols. The inset shows simulation estimates of the sample variance for R11

2 . �d� Learning curves, at
fixed N=3200, for the first three principal components. The population covariance contains three symmetry breaking directions, with
A1

2=20, A2
2=10, A3

2=20/3=1/0.15. Other parameters and simulation settings are as for �a�.
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finite size effects of nearly degenerate signals we set

�Am=�ÃmN−�. In the limit N→
 the functions f�Am� and
C�Am� tend to finite nonzero limiting values that depend only

on Ā.
We separate out the asymptotic values of the order param-

eters and so decompose minima of � as Rm
2 =Rm,0

2 +�Sm,
where �Rm,0�m=1

S is any set of values which satisfies �mRm,0
2

=�1
�0�. We have �Sm→0 as N→
, and so write �Sm

=�S̃mN−�. Similarly, for fixed ��Ãm�m=1
S we have dm→0. If

we write dm= d̃mN−�d then ��fluc /�Rm is dominated by deriva-
tives with respect to dm, and is O�N−1+2�d�. Noting that dm

=−Rm
−1�t2 /�Rm then for Rm

2 �0 we can express ��tree /�Rm
and the dominant contribution to ��fluc /�Rm in terms of �dm�.
From this we immediately have that �d= 1

3 . For ��
1
3 the tree

level contribution to �� /�Rm is dominant over the fluctuation
contribution and can be expanded to leading order as

− 2Nn��2t0Rm,0� �1/2�Am

�1 + Ā�1
�0��1/2

+
1

2

�
m�

�Sm�

�1 − �1
�0��3/2

−

�1/2Ā�
m�

�Ā�Sm� + �Am�Rm�,0
2 �

2�1 + Ā�1
�0��3/2 � + O�N−2 min��,��� .

�29�

From Eq. �29� we can see that since the second and third
terms in Rm

−1��tree /�Rm are independent of m then
��tree /�Rm=0, ∀m iff Rm,0
0 for all but one value of m.
Which of the asymptotic values Rm,0

2 is nonzero is as yet
undetermined. The tree level effective potential is given by

�tree = − Nn��2�t0 + N−��1/2

�
m

�ÃmRm,0
2

�1 + Ā�1
�0��1/2

+ O�N−2 min��,����
2

, �30�

where t0= t�Ā , �Rm,0��. Consequently we are free to minimize
the tree level effective potential with respect to Rm,0 subject
to the constraint �mRm,0

2 =�1
�0�. The largest positive value of

�Ãm will occur at m=1 and so, as N→
, Eq. �30� will be
minimized by setting R1,0

2 =�1
�0�, and Rm,0

2 =0 , ∀m�1. So
even for an asymptotically degenerate population covariance,
if ��

1
3 the leading signal direction will be learnt with the

same efficiency as for a nondegenerate population covari-
ance. This is hardly surprising given that for ��

1
3 and finite

N we are minimizing � by minimizing �tree, as we would for
the asymptotic theory. The sum of leading order corrections
�m�Sm is then determined from Eq. �29� by balancing the
O��A1� contribution in Eq. �29�, to give �=�.

For ��
1
3 the dominant contribution to �� /�Rm is

O�N−1/3� from the fluctuation term. This is balanced by the
second and third terms in Eq. �29�, and so for this scenario

�= 1
3 . Other terms from ��tree /�Rm and ��fluc /�Rm that are

not constant over m are smaller than O�N−��, and so the
O��Am� term in Eq. �29� cannot be balanced for ��

1
3 , even

though it is subdominant. Consequently for ��
1
3 we have

that �� /�Rm=0 does not admit a perturbative solution about
�Rm,0

2 �. For ��
1
3 we can find a minimum of � by constrain-

ing all Rm
2 to a common identical value, R2, and minimizing

with respect to R2. Clearly for this minimum we have
R2→g−1�1

�0�. The leading order contribution to � comes
from the tree level and is −Nn��2t0

2, with next to leading
contributions from both fluctuations and the tree level being
O�N−1/3�. Consequently, the asymptotic behavior of the over-
lap order parameters, deduced from our analysis of the effec-
tive potential �, is summarized below.

lim
N→


R1
2 = � �1

�0�, � �
1

3

g−1�1
�0�, � �

1

3
� ,

lim
N→


Rm
2 = � 0, � �

1

3

g−1�1
�0�, � �

1

3
�, m 	 2. �31�

Figure 2 shows simulation results for the two symmetry

breaking direction case, i.e., S=2. We have set Ā
= 1

2 ��20+�10�, �2=1 and �=0.2 so that we are above the

retarded learning transition point for Ā. Figure 2�a� shows
convergence with N of R11

2 for different values of �, while
Figure 2�b� shows convergence of R12

2 for different values of
�. For small values of �, e.g., �=0.1, the convergence of R11

2

towards the asymptotic value �1
�0� is clear. Despite the ap-

proach to a twofold degenerate population covariance the
stronger signal direction B1 is learnt without confusion by
B2. For intermediate values of N we in fact have R11

2 ��1
�0�

since A1� Ā for these intermediate values of N. For larger
values of �, e.g., �=0.5 and �=1 we have R11

2 converging
towards 1

2 ��1
�0�.

Although we have not explicitly given the analysis of
fluctuations for the multiple principal component case the
intuitive picture presented here suggests that, due to the
orthogonality of the signals and the decomposition, the
conclusions presented will still be valid for multiple prin-
cipal components and when we have a population covari-
ance containing more than one near-degenerate subspace.
Figure 3 shows simulation results for a population covari-
ance with four symmetry breaking directions. The first
two signals are nearly degenerate with A1−A2�N−1 and
1
2 �A1+A2�= 1

2 ��20+�10�, while the third and fourth signals
are nearly degenerate with A3−A4�N−0.1 and 1

2 �A3+A4�
= 1

2 ��1/0.3+�1/0.35�. From our analysis of the one principal
component problem we would expect the first principal com-
ponent J1 to overlap with the signal directions B1 and B2
equally well, i.e., R11

2 �R22
2 �R12

2 �R21 as N→
. In contrast
learning of the third signal direction by the third principal
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component should be unaffected by the presence of the
fourth signal direction, i.e., R33

2 = ��A3
2−1� / �A3�1+�A3��

and R44→0, as N→
. From Fig. 3�a� it is clear that the
presence of the second signal component B2 is affecting the
accuracy of the first principal component J1 in representing
the first signal component B1. In contrast Fig. 3�b� shows
that with increasing N the fourth signal component B4, has a
decreasing effect upon the accuracy of the third principal
component J3.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have utilized ideas and techniques from
statistical physics to understand the accuracy with which sig-

nals, or patterns, within data are detected. Specifically, our
aim was the study of the principal component learning
curves for high dimensional data. The learning curve for
each principal component displays a separate phase transi-
tion that coincides with the phase transition in the sample
covariance eigenspectrum, whereby a single eigenvalue de-
taches from the bulk spectrum �10�. That the series of phase
transitions in the learning curve and eigenspectrum coincide
is hardly surprising. Equally the fact that the form of the
learning curves are determined by a single functional form,
with only the value of Am differing, ultimately stems from
the orthogonal decomposition nature of PCA.

A number of the findings that have been determined using
statistical physics techniques have begun to be put on a more
rigorous mathematical and statistical footing. For example,
Péché �20� demonstrates the universality of the Marčenko
and Pastur form for the bulk spectrum �21� when the signal
strengths �Am�m=1

S are sufficiently weak. Similarly Paul �22�

FIG. 2. Plots of overlaps R2 between the first principal compo-
nent and the signal directions for different system sizes N. We have
fixed �=0.2 and set �2=1. The population covariance contains two

signal directions with similar signal strengths A1= Ā+�A ,A2

= Ā−�A. The signal strength separation is an increasingly weak
function of N, i.e., �A�N−� ,��0. The solid symbols show simu-
lation averages for different values of �. Simulation averages are
over 1000 data sets, except for the largest value of N for which
simulation averages are over 100 data sets. �a� Plot of R11

2 . The
upper dashed line shows the asymptotic value of R11

2 predicted by

Eq. �23� for A1= Ā, while the lower dashed line is drawn at half this
value. �b� Plot of R12

2 . The dashed line is drawn at half the

asymptotic value of R11
2 predicted by Eq. �23� for A1= Ā.

FIG. 3. Plot of R2 for the first and third principal components.
We have fixed �=0.5 and set �2=1. The population covariance C
contains four signal directions. A1 and A2 are of similar strength,
with A1−A2�N−1, while A3 and A4 are of similar strength, with
A3−A4�N−0.1. The solid symbols show averages over 1000 simu-
lated data sets for different values of N. �a� shows R11

2 and R12
2 . The

dashed line shows the common predicted asymptotic value of R11
2

and R12
2 . �b� shows R33

2 and R34
2 . The dashed line shows the pre-

dicted asymptotic value of R33
2 .
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has also derived the existence of retarded learning transitions
for multiple principal components within the symmetry
breaking model considered in this paper, while Baik et al.
�16� study the distribution of the largest sample covariance
eigenvalue in the symmetry breaking direction model when
the signal strengths are large. Baik and Silverstein �23� de-
termine the eigenvalue spectrum of a population covariance
equivalent to that studied here, confirming the results ob-
tained by Hoyle and Rattray using statistical physics tech-
niques �10�.

Simulation results presented in Fig. 2 focus on the two
symmetry breaking direction case. Naively one might as-
sume that when the distributions of the largest two sample
covariance eigenvalues effectively overlap, then the two sig-
nal directions will be effectively indistinguishable �degener-
ate� and the degree to which they are learnt, as measured by
the order parameters R11

2 and R22
2 , will be reduced. Although

for the isotropic case the distribution of the largest sample
covariance eigenvalue, 1 is known to follow a Tracy-
Widom distribution, with its characteristic N−2/3 scaling of
the standard deviation �in contrast to a N−1/2 scaling expected
from a standard central limit argument�, the work of Baik
et al. �16� indicates that above the corresponding retarded
learning transitions an N−1/2 scaling is appropriate, suggest-
ing that the distributions of 1 and 2 will certainly overlap
when A1−A2�N−1/2. Critical-like fluctuations that result
from the near degeneracy may renormalize this exponent and
effective overlap between 1 and 2 will occur for larger
values of A1−A2. However, for the near degenerate scenario

A1 ,A2→ Ā, both 1 and 2 are attempting to learn the same

population eigenvalue �2�1+ Ā�, and so the approaching de-
generacy need not cause significant added difficulty in learn-
ing the population eigenvalue. In contrast, in the limit

A1 ,A2→ Ā the actual signal directions will be defined only
up to an arbitrary rotation within the degenerate subspace,
resulting in greater variance of the fluctuations of R11

2 and
R22

2 . This is essentially the mechanism deduced in Sec. V. If
A1−A2�N−� and ��

1
3 , then as we approach the thermody-

namic limit N→
, N does not grow fast enough to suppress
fluctuations within the subspace spanned by the nearly de-
generate signal directions, and so the leading principal com-
ponents become oblivious to the weak structure within the
data. This conclusion is valid irrespective of the asymptotic

value Ā of the signal strength provided we are above the

retarded learning transition, i.e., �� Ā−2. Ultimately, if �A is
the separation of two population eigenvalues, then unless
�A�N−1/3, the two population eigenvalues will be effec-
tively degenerate from the point of view of the sample data
and the sample covariance. This relatively weak decrease
with N means that even in what we may naively think of as
large systems, for which we believe the asymptotic theory to
be accurate, the effect of fluctuations can be marked. The
effect can be demonstrated by contrasting the behavior of R22

2

in Figs. 1�a� and 1�d�. In Fig. 1�a� the top two signals are
well separated �A1−A2�1.31� and simulation results follow
closely the theoretical learning curves. However, in Fig. 1�d�
the addition of a third signal which is closer to the second
signal �A2−A3�0.58� increases noticeably the discrepancy

between simulation and asymptotic theory for R22
2 , even

though the retarded learning transition points are equally
spaced in � and N is large �N=3200�.

How much insight do we gain from analysis of fluctuation
effects in the leading principal component? We have not
given here the full analysis of fluctuation effects for multiple
principal components since it is considerably more involved.
Although the theoretical analysis given in Sec. V concen-
trates on the behavior of the leading principal component, we
would expect the conclusions to be valid for the multiple
principal component case. Indeed the simulation results pre-
sented in Fig. 3 suggest that this is the case. The impact of
finite size effects for multiple principal components is also
likely to extend beyond the batch learning scenario with
��1 that we have primarily discussed here. Significant fi-
nite size effects will have repercussions for online training
scenarios, even though by definition online training consid-
ers an increasing number of presented training examples and
therefore studies the approach to accurate learning of the true
signal directions from a potentially large number of training
examples ���1� �11,12�. In the initial stages of online learn-
ing the principal components have yet to learn the true signal
directions. Any one particular principal component will rep-
resent all the true signal directions almost equally poorly.
The system thereby displays a permutation symmetry. As
training progresses this permutation symmetry is broken,
with individual principal components specializing in learning
a particular signal direction. One would suspect that this dy-
namical symmetry breaking is intricately linked to the pres-
ence of retarded learning phase transitions in the batch learn-
ing scenario. Such an observation has been commented on
by Bunzmann et al. who used a PCA decomposition of train-
ing data as a prior input stage to an artificial neural network,
with training of the principal components and neural network
performed simultaneously online �13�. The putative link be-
tween dynamical symmetry breaking in online learning and
retarded learning phase transitions in batch learning empha-
sizes the importance of the finite-size effects studied within
this paper. Critical-like fluctuations arising from nearly de-
generate signals that lead to renormalization of the leading
order mean-field theory will most likely also lead to critical
slowing down of online learning, with an extended “plateau”
stage in the PCA learning curve within the online learning
scenario considered by Biehl and Schlösser �11�. The work
of Bunzmann et al. highlights that PCA may be used as a
prior step to more sophisticated learning algorithms, or im-
plicitly within those learning algorithms. Understanding how
orthogonal decompositions of sample data perform is then a
key component in understanding the performance of these
composite learning algorithms.
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APPENDIX A

One principal component. Here we set T=1 and denote
the single principal component by J. We wish to evaluate the
ensemble average
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�ln� dJ��1 − �J�2�exp���
�=1

p

��� · J�2 + �
m=1

S

hmJ · Bm	�
�

.

�A1�

Ultimately we take the limit hm→0+. The leading order
�tree level� expression for the effective potential can be de-
termined from the saddle point structure of the appropriate
partition function in the absence of hm. Therefore, for conve-
nience we shall drop the source terms from subsequent ex-
pressions. We start with the replica partition function

Z = �2��−Np/2�det C�− p
2 � �

�=1

p

d��

�exp�−
1

2�
�

��
TC−1��	 � �

�=1

n

dJ��
�=1

n

��1 − �J��2�

� exp���
�,�

�J� · ���2	 . �A2�

We can rewrite exp���J� ·���2� as �1/�2���dx��

�exp�− 1
2x��

2 +�1/2x��J� ·���. After integrating over �� and
x�� we obtain

Z = �2��−�1/2�Nn� �
�=1

n

dJ��
�=1

n

��1 − �J��2��det M�−p/2,

�A3�

where �for C=�2I+�2�mAmBmBm
T �,

M��� = ���� − 2��2�q��� + �
m=1

S

AmRm
� Rm

��	 ,

Rm
� = J� · Bm,

q��� = J� · J��. �A4�

Here we have abused the notation by using Rm
� to repre-

sent the overlap between the �th replica of the first principal
component J� and the signal direction Bm, while we also use
Rm

2 to represent the expectation value �J ·Bm�2��. However, it
will always be apparent in which context we are using the
notation. The integrations over J� are performed in terms of
integrations over Rm

� and q���, i.e.,

� �
�

dJ��
�=1

n

��1 − �J��2�

=� �
�

dJ��
�=1

n

��1 − �J��2� � �
�

dRm
� ��Rm

� − J� · Bm�

�� �
����

dq�����q��� − J� · J��� . �A5�

We rewrite � functions in terms of their Fourier representa-
tions. After integrating over J� and Fourier variables, and

retaining only terms in the exponent of the integrand that are
extensive in N and depend upon �q���� or �Rm

� �, we obtain

Z �� �
�

dR�� �
����

dq��� exp�N�1

2
tr ln L −

�

2
tr ln M	� ,

�A6�

where L���=L���=q���−�m
S Rm

� Rm
��. We now look for station-

ary points of the exponent of the integrand in Eq. �A6�. As-
suming replica symmetry for such saddle points we put,

Rm
� = Rm, ∀ � ,

q��� = q, ∀ �, �� � �, q�� = 1, ∀ � . �A7�

Putting x=��2�1−q� then, to leading order in n� the expo-
nent of the integrand becomes

1

2
Nn��2� 1

x�1 − �
m=1

S

Rm
2� +

2�

1 − 2x�1 + �
m=1

S

AmRm
2�� .

�A8�

In the limit N→
 the integral in Eq. �A6� is dominated by
stationary points of Eq. �A8� and to leading order ln Z is
simply the value of the exponent in Eq. �A8�. At this order
�tree level� the effective potential is identical in form to the
negative of the saddle point exponent, but with Rm

2 now rep-
resenting the order parameter �J ·Bm�2��, rather than an in-
tegration variable.

Multiple Principal Components. For multiple principal
components �T�1� the appropriate expectation value is

�ln� �
i=1

T

dJi��IT − K�exp���
i=1

T

�
�=1

p

��� · Ji�2	�
�

,

�A9�

where Kii�=Ji ·Ji�. Introducing replicas for the principal
components J1 ,J2 , . . . ,JT we obtain the replica partition
function

Z = �2��−Np/2�det C�− p
2 � �

�=1

p

d��

�exp�−
1

2 �
�=1

p

��
TC−1��	 � �

i=1

T

�
�=1

n

dJi
��

�=1

n

��IT − K��

� exp���
i=1

T

�
�=1

p

�
�=1

n

�Ji
� · ���2	 . �A10�

Here, the matrix K� has elements �K��ii�=Ji
� ·Ji�

��. Following
the same approach as before it is an easy matter to confirm
that

Z �� �
m,i,�

dRmi
� �

i,i�
�

����

dQii�
��� exp�N

2
�tr ln L − �tr ln M�	 ,

�A11�

where M=I−2�P and
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Pii�
��� = �2Qii�

��� + �2�
m

AmRmi
� Rmi�

�� ,

Lii�
��� = Qii�

��� − �
m

Rmi
� Rmi�

�� ,

Qii�
��� = Ji

� · Ji�
��. �A12�

Here Rmi
� =Ji

� ·Bm represents the overlap of the �th replica of
the ith principal component, Ji with the mth symmetry break-
ing direction Bm. Under an assumption of that dominant
saddle points of the integrand in Eq. �A11� are replica sym-
metric we put

Rmi
� = Rmi, ∀ � ,

Qii�
��� = qii�, ∀ � � ��. �A13�

To leading order we obtain the exponent of the integrand for
a replica symmetric configuration as

1

2
Nn��2�tr�X−1�I − �

m

RmRm
T	�

+ 2�tr��I − 2X�−1�I + �
m

AmRmRm
T	�� ,. �A14�

where Rm and X are defined by

X = ��2�I − q� , �A15�

�Rm�i = Rmi, �A16�

�q�ii� = qii�. �A17�

APPENDIX B

For simplicity and illustrative purposes we only analyze
fluctuation effects for the one principal component case. The
one-loop contribution to the effective potential is given by
evaluating ln det�−H� for the Hessian H of the tree level
saddle point and simply replacing the saddle point value of
Rm

2 with the order parameter �J ·Bm�2��. Since we use the
same notation Rm

2 to represent the integration variable and
the order parameter we have only to express ln det�−H�,
evaluated at the saddle point, entirely in terms of the saddle
point value of Rm. We start from exponent of Eq. �A6�

N

2
tr ln L −

N�

2
tr ln M . �B1�

We simplify the notation by using �= �� ,���= ��1 ,�2� to
represent an ordered pair of replicas ����. Denoting fluc-
tuations, in an obvious notation, as �Rm

� and �q�,��=�q� we
can expand Eq. �B1� about a replica-symmetric saddle point
to obtain �to second order�,

1

2
Nn��2� 1

x�1 − �
m=1

S

Rm
2� +

2�

1 − 2x�1 + �
m=1

S

AmRm
2��

+
N

2 �
�,��

�q�H���
�qq��q�� + N �

�,m�,��

�q�H�m�,��
�qR� �Rm�

��

+
N

2 �
m,m�,�,��

�Rm
� Hm,m�,���

�RR� �Rm�
�� . �B2�

We have decomposed the Hessian into the various contribu-
tions from �i� just fluctuations �q�,��, �ii� just fluctuations
�Rm

� , �iii� cross terms involving both �q��� and �Rm
� . For

brevity, we do not give here the expressions for the matrices
H�qq� ,H�qR� ,H�RR�, since they are easily evaluated. The
Gaussian fluctuations in �q� are easily integrated out to yield

1

2
Nn��2� 1

x�1 − �
m=1

S

Rm
2� +

2�

1 − 2x�1 + �
m=1

S

AmRm
2��

+
N

2 �
m,m�,�,��

�Rm
� �Rm�

�� �H�RR�

− �H�qR��T�H�qq��−1H�qR��m,m�,���

−
1

2
tr ln�− H�qq�� −

n�n − 1�
4

ln
N

2�
. �B3�

The matrix H�qq� has the form

H���
�qq� = C0 + C1��1�1�

��2�2�
+ C2���1�1�

+ ��2�2�
+ ��1�2�

+ ��2�1�
� ,

�B4�

and so is of the form considered by de Almeida and Thouless
�1,24�. Eigenvalues of H�qq� are then easily determined. Ex-
plicitly we find to O�n��,

ln det�− H�qq��

= n��2��1 − �
m

Rm
2 	2

x4 − 16�

�1 + �
m

AmRm
2 	2

�1 − 2x�4
�

���1 − �
m

Rm
2 	

x3 + 8�

�1 + �
m

AmRm
2 	

�1 − 2x�3
�−1

��1 + O��−1�� . �B5�

It can be verified that the inverse of H�qq� is also of the
form given in Eq. �B4� above. Substituting the form in Eq.
�B4� into Eq. �B3� gives H�RR�− �H�qR��T�H�qq��−1H�qR�
−U,
with U of the form

U = W���� + 1n1n
TY , �B6�

where 1n represents an n-dimensional vector in replica space
with components all equal to 1. Finally integrating out
Gaussian fluctuations in �Rm

� gives a contribution of
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−
1

2
tr ln NU +

Sn

2
ln 2�

= −
n

2
�tr ln W + tr�W−1Y� + S ln

N

2�
	 + O�n2� .

�B7�

Using notation �1=�mRm
2 and �2=�mAmRm

2 , one explic-
itly finds

Wmm� = ��2�mm��1

x
−

2�Am

1 − 2x
� + 8��2RmRm�f�Am�f�Am��

+ O�n� , �B8�

where the function f�Am� is given by

f�Am� = � 1

x2 +
4�Am

�1 − 2x�2��1 − �1

x3 +
8��1 + �2�
�1 − 2x�3 �−1/2

�B9�

and

Ymm� = �2�4�mm�C�Am,x,�1,�2�

+ �2�4g�Am,Am�,x,�1,�2�RmRm� + O�n� ,

�B10�

with C�Am ,x ,�1 ,�2� given by

C�Am,x,�1,�2� = − �4�Am�1 + �2�
�1 − 2x�2 +

1 − �1

x2 � .

�B11�

Similarly we decompose g�Am ,Am� ,x ,�1 ,�2�=g0−16�g1

+g2� /g4−16g3 /g4
2 where,

g0 =
1

x2 −
4�AmAm�

�1 − 2x�2 , �B12�

g1 = �1 − �1

x3 −
8�Am�1 + �2�

�1 − 2x�3 �� 1

x2 +
4�Am�

�1 − 2x�2� ,

�B13�

g2 = � 1

x2 +
4�Am

�1 − 2x�2��1 − �1

x3 −
8�Am��1 + �2�

�1 − 2x�3 � ,

�B14�

g3 = � 1

x2 +
4�Am

�1 − 2x�2�� 1

x2 +
4�Am�

�1 − 2x�2�� �1 − �1�2

x4

−
16��1 + �2�2

�1 − 2x�4 � , �B15�

g4 = �1 − �1

x3 +
8��1 + �2�
�1 − 2x�3 � . �B16�

In order to affect the leading order asymptotic calculation we
require a contribution of order O�n��. Such terms only come

from ntrW−1Y in �B7�. The inverse matrix W−1 is easily
evaluated as,

�W−1�mm� = �−1�−2��mm�dm
−1 −

RmRm�f�Am�f�Am��dm
−1dm�

−1

1 + �
m�

Rm�
2 f2�Am��dm�

−1 �
+ O�n� , �B17�

where dm=x−1−2�Am�1−2x�−1. Evaluating ntrW−1Y gives

ntrW−1Y = n��2��m C�Am�dm
−1 − �

m

C�Am�Rm
2 f2�Am�dm

−2

1 + �
m�

Rm�
2 f2�Am��dm�

−1

+ �
m

Rm
2 g�Am,Am�dm

−1

− �
m,m�

g�Am,Am��Rm
2 Rm�

2 f�Am�f�Am��dm
−1dm�

−1

1 + �
m�

Rm�
2 f2�Am��dm�

−1 �
+ O�n2� . �B18�

Source terms in Eq. �10� for the evaluation of �J ·Bm�2�� do
not affect the saddle point equation �12� and so we can sim-
ply substitute into dm, C,f , and g the tree-level expression for
x in terms of the set of order parameters �Rm�, i.e., insert the
positive root of Eq. �12�. For dm this gives

dm = t��1 − �
m

Rm
2 	−1/2

− �1/2Am�1 + �
m

AmRm
2 	−1/2� ,

�B19�

where

t = �1 − �
m=1

S

Rm
2	1/2

+ ���1 + �
m=1

S

AmRm
2�	1/2

. �B20�

The �one-loop� fluctuation contribution to the determina-
tion of the order parameter �J ·Bm�2� then comes from dif-
ferentiating Eq. �B18� with respect to Rm. We are specifically
interested in the near degenerate scenario, for example, when
two signal strengths are similar in value. Under this scenario
the Hessian of Eq. �B1� will be nearly singular and we
expect a divergent contribution from tr ln U. We can write

Am= Ā+�Am. In the limit Am→ Ā∀m, we have that dm→0.
In this limit the contribution from ln det�−H�qq�� given in Eq.
�B5� is finite, and so we no longer consider it. The dominant

terms in limn→0
�

�Rm
trW−1Y come from derivatives

�dm
−1

�Rm
. We

find derivatives, with respect to dm, of the third and fourth
terms in Eq. �B18� cancel to leading order in the limit
�Am→0, for all values of the order parameters �Rm�. There-
fore we concentrate on the first and second terms to deter-

mine the order parameter values �Rm� in the limit Am→ Ā,
i.e., the relevant, dominant contribution to the effective po-
tential from fluctuations is

D. C. HOYLE AND M. RATTRAY PHYSICAL REVIEW E 75, 016101 �2007�

016101-12



1

2
n��2��m C�Am�dm

−1 − �
m

C�Am�Rm
2 f2�Am�dm

−2

�
m�

Rm�
2 f2�Am��dm�

−1 � . �B21�

In contrast the tree level contribution is O�nN��. There
are also additional O�n�� contributions from next-to-leading

order terms omitted from the integration over Fourier vari-
ables in Eq. �A5�. However, these omitted contributions do
not explicitly depend upon the signal strengths Am, and it is
easily confirmed that the omitted terms remain finite in the
degenerate limit �Am→0. Consequently they are subdomi-
nant in comparison to the contribution in Eq. �B21� and we
no longer consider them.
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